Objective estimation of the probability density function for climate sensitivity
نویسندگان
چکیده
منابع مشابه
Probability Density Function Estimation using theMinMax
| The problem of initial probability assignment consistent with the available information about a probabilis-tic system is called a direct problem. Jaynes' maximum en-tropy principle (MaxEnt) provides a method for solving direct problems when the available information is in the form of moment constraints. On the other hand, given a probability distribution, the problem of nding a set of constra...
متن کاملRobust Scale Estimation for the Generalized Gaussian Probability Density Function
This article proposes a robust way to estimate the scale parameter of a generalised centered Gaussian mixture. The principle relies on the association of samples of this mixture to generate samples of a new variable that shows relevant distribution properties to estimate the unknown parameter. In fact, the distribution of this new variable shows a maximum that is linked to this scale parameter....
متن کاملQuantum Computation Based Probability Density Function Estimation
Signal processing techniques will lean on blind methods in the near future, where no redundant, resource allocating information will be transmitted through the channel. To achieve a proper decision, however, it is essential to know at least the probability density function (pdf), which to estimate is classically a time consumpting and/or less accurate hard task, that may make decisions to fail....
متن کاملUsing zero-norm constraint for sparse probability density function estimation
A new sparse kernel probability density function (pdf) estimator based on zero-norm constraint is constructed using the classical Parzen window (PW) estimate as the target function. The so-called zero-norm of the parameters is used in order to achieve enhanced model sparsity, and it is suggested to minimize an approximate function of the zero-norm. It is shown that under certain condition, the ...
متن کاملPareto Density Estimation: Probability Density Estimation for Knowledge Discovery
Pareto Density Estimation (PDE) as defined in this work is a method for the estimation of probability density functions using hyperspheres. The radius of the hyperspheres is derived from optimizing information while minimizing set size. It is shown, that PDE is a very good estimate for clusters of Gaussian structure. The robustness of the method is tested with respect to cluster overlap, number...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geophysical Research: Atmospheres
سال: 2001
ISSN: 0148-0227
DOI: 10.1029/2000jd000259